a2 United States Patent

Mehta et al.

US009459904B2

US 9,459,904 B2
Oct. 4, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(71)
(72)

(73)

")

@
(22)

(65)

(60)

(1)

(52)

(58)

NUMA VO AWARE NETWORK QUEUE
ASSIGNMENTS

Applicant: VMWare, Inc., Palo Alto, CA (US)

Inventors: Rishi Mehta, San Jose, CA (US);
Xiaochuan Shen, Fremont, CA (US);
Amitabha Banerjee, San Jose, CA
(US); Ayyappan Veeraiyan, Cupertino,

CA (US)

Assignee: VMware, Inc., Palo Alto, CA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

Appl. No.: 14/530,587

Filed: Oct. 31, 2014

Prior Publication Data

US 2016/0092259 Al Mar. 31, 2016

Related U.S. Application Data

Provisional application No. 62/058,033, filed on Sep.
30, 2014.

Int. CL.

GO6F 9/455 (2006.01)

GO6F 9/46 (2006.01)

GO6F 15/167 (2006.01)

GO6F 12/02 (2006.01)

U.S. CL

CPC GO6F 9/45558 (2013.01); GOGF 12/023

(2013.01); GOGF 2009/45583 (2013.01); GO6F
2212/2542 (2013.01)
Field of Classification Search
None
See application file for complete search history.

1210

(56) References Cited
U.S. PATENT DOCUMENTS
2010/0250868 Al 9/2010 Oshins
2012/0278800 Al* 11/2012 Nicholas GOGF 9/45558
718/1
2013/0239119 A1* 9/2013 Gargccceeevenene GOG6F 9/5083
718/105
2015/0052287 Al* 2/2015 Venkatasubramanian GOG6F 9/5033
711/6
2015/0058861 Al* 2/2015 Zheng ... HO4L 47/56
718/104
2015/0277779 Al 10/2015 Devarapalli
2016/0062802 Al* 3/2016 Guan ... GOG6F 9/4881
711/148
2016/0085571 Al* 3/2016 Kimccccoeeens GOGF 9/45558
718/1

OTHER PUBLICATIONS

Lee, Adam, “Notice of Allowance and Fee(s) Due”, U.S. Appl. No.
14/530,574, mailed Jul. 19, 2016, 23 pages.

* cited by examiner

Primary Examiner — Adam Lee
(74) Attorney, Agent, or Firm — Barta, Jones & Foley, P.C.

(57) ABSTRACT

Systems and methods for preferentially assigning virtual
machines (VMs) on a particular NUMA node with network
queues on the same NUMA node are described. A load
balancer process on a host assigns multiple VMs to network
queues. The assignment of the VMs to a network queues is
performed with a bias toward assigning VMs using a par-
ticular NUMA node to network queues on the same NUMA
node. A scheduler on the host assigns VMs to NUMA nodes.
The scheduler is biased toward assigning VMs to the same
NUMA node as the PNIC and/or the same NUMA node as
a network queue assigned to the VM.

21 Claims, 16 Drawing Sheets

1200

Start

Identify NUMA nodes of VMs

1220

l

1230

l

Generate an assignment matrix for assigning VMs to queues, biased
toward assigning VMs to queues on the same NUMA node

[Identify NUMA nodes of queues J

1240

l

[Assign queue to VM)

US 9,459,904 B2

Sheet 1 of 16

Oct. 4, 2016

U.S. Patent

[24n31]

00T
¢l : 0TI

SFEA] 1T PR TR

SII
S0l

| moaaanaanan

0ST

S A
S5

}
},

m,
i ;F £

sy POE 0]
RET

—— — — —

DHYEBETON ALY

901

ITHVA | »# e

T WA

ATTHA

TTH WA

P,

[4]!

201

US 9,459,904 B2

Sheet 2 of 16

Oct. 4, 2016

U.S. Patent

7 24n31]
0T
00T DINd
(1144
- 1O2UUODIIMNU —
€07 ___ 0T ___ T0C ___
8T LTC 91
ATOUWSIN AIOWON AIOtwS N

[K4 [4¥¢ 11T

sngg sngy sngy
30¢ 30¢ 30¢ 80¢C L0¢ L0T L0T L0T 90T 90T 90¢C 90¢
NnddD Ndd Ndd NdD NdD NdO Nndd ndd ndd Nndd NnddD Nndd

T 9PON VINIIN 1 9PON VINNIN 0 9PON VINNIN
1S0H

US 9,459,904 B2

Sheet 3 of 16

Oct. 4, 2016

U.S. Patent

DINd
Sad 3@] EEEE swguy Furssaorg X
At “I 1 7 W S
A
i i H ! oo £
LTg
y
IOALT DINd L\
19¢ 65¢ 0zs
J 4
Y _ L | 101 X1 I0199[3§ 2Ny
120ue[RqYY agenog y D 8T¢
-—> anong) S1e18 - M ¢
S[00g 91¢
| oouereqoy SUGOUMS [PIIA
<+ 1004 She E4 \ w
i swiguyy < o cee ™
Iooueef PEOT OTWIRL o cee .
_ J SIS ~ y . ~
/ ! £ £
6ee L urey 01 | urey Ol
A / A F
A 4 A 4 0s€
I0AeT Jorenwg DINA Jorernwyg DINA
UOHeZITemIA 83 23
FIOMION A I ¥
x L 4 v L0€ A
01¢€ JINA JINA
I9[npayQ : © oo
APy NdDd J U AA J | NA J
543 U3 SO€

U.S. Patent Oct. 4, 2016 Sheet 4 of 16 US 9,459,904 B2

410 /

Run qucuc assignment proccss to move applicable VM(s) out of
default pool and move applicable VM(s) back to default pool

420 l

Run pool adjust process to rebalance queues within each pool

430 l

Run pool balance operation to maintain desired balance across
the pools

End

Figure 4

US 9,459,904 B2

Sheet 5 of 16

Oct. 4, 2016

U.S. Patent

e L (A -
“ | 0SS —» DINd
_ |
_ !
(129 ! QIEMpIRH !
! | J
- _ "
Y i | \/
— I p—
£y _ “ TES
I _
I _
! I
I _
I _
| I
! I
_ I
‘ _
z onang) _ " 1onong)
I
_ |
_ I
_
_
_ I
! I
I _
_ _
! I
I _
___9NA ___SA VWA _ | WA TINA TINA
9¢s 543 ¥Cs | “ 43 TS TS
A A 0 _ [J A A
— 4 I “ A y y
TIs ! | TIS
_
TVINON | ! I VNN
I _
! I

US 9,459,904 B2

Sheet 6 of 16

Oct. 4, 2016

U.S. Patent

S | 9243l | o
I | osc —»| JINd
|
| "
|]
L +
[iZ3 sIempIRY !
|
{ m "
v _ “
T _ !
| |
| |
| |
|]
| |
| |
| |
I]
|]
7 anang) _ I
| "
|]
| |
|
|
I]
|
| |
|
| |
| |
| |
|
|]
| |
9NA SKWA _ PWA ! L] EWNA _TWA 1WA
92 4 bTs _ | T TS 43
A] \ ! _ \ A A
v y ‘ | N | ¥ y
4 ! v TI
|
VNN | ! [VIWNN
|
| “
L

US 9,459,904 B2

Sheet 7 of 16

Oct. 4, 2016

U.S. Patent

T T T T T T T T T TT T T T T T T T T T, Y m&k%ﬁm T
I * | 106 _
| ! 0sc —» | OINd _
" “ _
| [|

0rs drempIRg _
_
_ |
I “ _
|
! " \ 4 I
! J— |
! ! 1¢¢ I
I ! _
I ! _
I ! _
I ! _
I ! _
I ! _
I ! _
I ! _
I ! _
| “ [onang) _
|
I ! _
I ! _
_ I //P _
I ! _
I ! _
I ! _
I ! _
I " _
" | g\/ |m§> FINA |
| i 9¢% (549 $T% _
" | A A A I
I ! _
! ! ENA TNA TNA |
| 1 | €% TS K4S _
! ! A 0 |
_ | Yy v Y « Yy
! | 1T |
7 VINON ! ! |
| | I VINON !
I ! _
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII N | _
||||||||||||||||||||||||||||||||| _

US 9,459,904 B2

Sheet 8 of 16

Oct. 4, 2016

U.S. Patent

|||||||||||||||||||||||||||||||| o .,
o | g 24ns1y T
_ | 0SS —» DINd
_ “
! |
1 1
2y aImMmpIRH
(i :
[_
4 | | Y
433 _ ! TeS
I I
I I
I I
| |
! |
I I
I I
| |
! |
ZonongQ _ “ ronong)
_ “
! |
I I
I I
I I
| |
! |
I I
I I
I I
I
Y I " A
I I
I I
9NA SWA FINA _ I EINA TNA INA
9C¢ 4 ¥is | S T
A A A | I A A A
v Y v | I y v
IS _ I [1<
I
TVIANN | ! [VINON
| |
| |

US 9,459,904 B2

Sheet 9 of 16

Oct. 4, 2016

U.S. Patent

onanb
MO[JIOAO PIIBYS

e 6 2ANSL] T
I | 0SS — DINd
_
_ “
| I
| 1
0rs rempley
P
[| |
| I
& I I 4 \J
(433 _ | %6 TES
_
_ “
| I
| I
| I
| |
| I
| I
| I
7 onang) _ “ € onang) [enang)
_
_ “
_
| I
| I
| I
| I
| I
| I
| _
_
v | v
_
SINA PINA ONA “ ENA TNA TINA
543 vZs 9z¢ S TS TS
_
_
_
_
_
_
_
_
_

US 9,459,904 B2

Sheet 10 of 16

Oct. 4, 2016

U.S. Patent

|||||||||||||||||||||||||||||||| PP
w0 | 0L 2n3L] o
I | 0SS —» OINd
[
| |
_ _
| I
[)
ﬁ oIempIey —_—
v _ |
| | y \
FE01 TTs _ A TeS
| |
[_
[_
I [
! [
| I
[_
_ _
¥ onanQ) zonand) _ _ ¢ onanQ) Tanong)
| |
_ _
I [
! [
[_
[_
_ _
I [
! [
[_
[_
\ J Y _ [A
_
[
_9WA WA PNA | | ewa _TWA WA
9c¢ §es 5 _ | Lges [443 1T¢
4 A A _ _ A
y v _ | v / v
Z1S I sononb mofpI0A0 T1%
| [
T VINON ! paatped T VINON
[_
| [

-

U.S. Patent Oct. 4, 2016 Sheet 11 of 16 US 9,459,904 B2

1100
)

[Receive notification that a VM has been implemented on a J

1110

particular NUMA node

1120

Queue implemented No

on NUMA nodc of VM?

1140 130

Queue on NUMA node

has available capacity?

Implement new queue on
NUMA node of VM

1150

[Assign queue to VM

End

Figure 11

U.S. Patent Oct. 4, 2016 Sheet 12 of 16 US 9,459,904 B2

1200

1210
[Identify NUMA nodes of VMs J
1220 l
[Identify NUMA nodces of qucucs J
1230 l
Generate an assignment matrix for assigning VMs to queues, biased
toward assigning VMs to queucs on the samec NUMA node

1240 l

Assign queue to VM J

Y

End

Figure 12

U.S. Patent Oct. 4, 2016 Sheet 13 of 16 US 9,459,904 B2

1310

[Identify a single queue on a NUMA node
1320 l

[Identify a metric of the queue

1330
Identified metric meets
a threshold metric?

1340

[Split queue]

End -

Figure 13

U.S. Patent Oct. 4, 2016 Sheet 14 of 16 US 9,459,904 B2

1410

Identify multiple queues on a NUMA node

[
l
[

Identify metric of queues

1430

Metric meets threshold metric ?

1440

[Consolidate queues j

End o’

Figure 14

U.S. Patent Oct. 4, 2016 Sheet 15 of 16 US 9,459,904 B2

1510 /

[Identify NUMA node of PNIC on host

1520

l

Identify NUMA nodes of network queues

—

biased toward assigning VMs to NUMA nodes of network queues
associated with the VMs

1540 l

[Assign VMs to NUMA nodes based on assignment matrix

1530 l
TGenerate assignment matrix for assigning VMs to NUMA nodes

£/

N

End

Figure 15

US 9,459,904 B2

Sheet 16 of 16

Oct. 4, 2016

U.S. Patent

$991

AN

91 aanS1y

0v91

SJIOMIAN

$201A9(7 Induy

0191

AN

I0SSQ001J

0€91

WO

S091

NahllTg|
mndinQ

KIOWRN
wosAS

N\

Sl

91

J3e101S

Seal

0091

US 9,459,904 B2

1

NUMA /O AWARE NETWORK QUEUE
ASSIGNMENTS

BACKGROUND

In recent years, computer systems have been developed to
use multiple processors and multiple sets of memory circuits
that are accessible to the multiple processors of the computer
system. In some computer systems, each processor has
access to both local memory (of that processor) and non-
local memory (memory local to another processor or shared
by multiple processors). A processor can access its local
memory more efficiently (e.g., with less time between a
request for data from the memory and receipt of that data
from the memory) than non-local memory. Some systems
are programmed so that a processor uses its local memory as
much as possible, accessing non-local memory only when
the memory requirements of that processor exceed the
capacity of that local memory. In some cases, the combina-
tion of a processor and its local memory is characterized as
a non-uniform memory access (NUMA) node. In some
datacenters and enterprise software networks that implement
virtual machines, a scheduler assigns the virtual machines to
use particular NUMA nodes. In some cases, the assignments
are temporary and a virtual machine can be assigned to
different NUMA nodes at different times. In some cases,
other processes of a host machine that implements the
virtual machines are also assigned to NUMA nodes (e.g., by
a load balancer). One type of process on a host machine that
is assigned to NUMA nodes is a network queue (sometimes
called a “queue”) of a physical network interface card (PNIC
or NIC).

In the last few years, queue management systems have
been proposed for distributing incoming and outgoing traffic
to and from a host through a NIC with multiple queues. FI1G.
1 illustrates one such system. Specifically, it illustrates (1)
multiple virtual machines (VMs) 102 that execute on a host
computer (not shown), and (2) a NIC 100 that has multiple
queues. As shown in this figure, each queue has a receive
side set 104 of buffers and a transmit side set 106 of buffers
to handle respectively incoming and outgoing traffic. The
system has four types of queues, which are: a default queue
105, several non-default queues 115, LRO (large receive
offload) queues 120 and RSS (receive side scaling) queues
125. The latter two types of queues are specialty queues tied
to specific hardware LRO and RSS functionalities supported
by the NIC.

BRIEF SUMMARY

Some embodiments provide a VM and network queue
management system that efficiently and dynamically man-
ages multiple queues that process traffic to and from multiple
virtual machines (VMs) executing on a host. The system
assigns VMs to queues and NUMA nodes with a bias toward
assigning VMs to the same NUMA nodes as their assigned
queues.

Some embodiments assign VMs to queues and NUMA
nodes in which the VM uses a queue on the same NUMA
node as the VM. In some embodiments, a load balancer
determines which of multiple queues a VM will be assigned
to. The load balancer of some embodiments generates its
assignments based on various considerations, with a bias
toward assigning the VMs to queues on the same NUMA
node as the VM. In some embodiments, the load balancer
also determines whether to split or consolidate queues as
network traffic increases or decreases.

10

15

20

25

30

35

40

45

50

55

60

65

2

The VMs are assigned to particular NUMA nodes by a
scheduler in some embodiments. The scheduler of some
embodiments dynamically assigns the VMs to use particular
NUMA nodes. The scheduler of some embodiments gener-
ates its assignments based on various considerations, with a
bias toward assigning the VMs to the NUMA node that the
PNIC is assigned to. In some embodiments, the scheduler
also biases its assignment toward assigning VMs to NUMA
nodes already in use by the queue to which the VM is
assigned.

The preceding Summary is intended to serve as a brief
introduction to some embodiments of the invention. It is not
meant to be an introduction or overview of all inventive
subject matter disclosed in this document. The Detailed
Description that follows and the Drawings that are referred
to in the Detailed Description will further describe the
embodiments described in the Summary as well as other
embodiments. Accordingly, to understand all the embodi-
ments described by this document, a full review of the
Summary, Detailed Description and the Drawings is needed.
Moreover, the claimed subject matters are not to be limited
by the illustrative details in the Summary, Detailed Descrip-
tion and the Drawing.

BRIEF DESCRIPTION OF THE DRAWINGS

The novel features of the invention are set forth in the
appended claims. However, for purposes of explanation,
several embodiments of the invention are set forth in the
following figures.

FIG. 1 illustrates a queue management system or distrib-
uting incoming and outgoing traffic to and from VMs on a
host through a NIC with multiple queues.

FIG. 2 illustrates multiple NUMA nodes on a host system.

FIG. 2 illustrates multiple NUMA nodes on a host system.

FIG. 3 illustrates (1) several VMs that are executing on a
host and network systems for sending traffic from the VMs
to a network outside the host.

FIG. 4 conceptually illustrates an overall process that the
load balancer performs in some embodiments.

FIG. 5 conceptually illustrates a set of VMs assigned to
multiple queues without regard to NUMA nodes.

FIG. 6 conceptually illustrates a set of VMs assigned to a
single queue without regard to NUMA nodes.

FIG. 7 conceptually illustrates a set of VMs assigned to a
single queue on the same NUMA node as both the VMs and
the PNIC served by the queues.

FIG. 8 conceptually illustrates a set of VMs assigned to
multiple queues on the same NUMA node as both the VM
and the PNIC served by the queues.

FIG. 9 illustrates an embodiment that provides a single
overflow queue on a single NUMA node for overflow VMs
on multiple NUMA nodes.

FIG. 10 illustrates an embodiment that provides a separate
overflow queue on each of multiple NUMA nodes with
overflow VMs.

FIG. 11 conceptually illustrates a process of some
embodiments that assigns VMs to network queues on the
same NUMA node.

FIG. 12 conceptually illustrates a process for determining
assignments of VMs to network queues that is biased toward
matching NUMA nodes.

FIG. 13 conceptually illustrates a process of some
embodiments for splitting a network queue.

FIG. 14 conceptually illustrates a process of some
embodiments for consolidating a set of network queues.

US 9,459,904 B2

3

FIG. 15 conceptually illustrates a process for determining
assignments of VMs to NUMA nodes that is biased toward
matching NUMA nodes of VMs with NUMA nodes of
network queues.

FIG. 16 conceptually illustrates an electronic system with
which some embodiments of the invention are implemented.

DETAILED DESCRIPTION

In the following detailed description of the invention,
numerous details, examples, and embodiments of the inven-
tion are set forth and described. However, it will be clear and
apparent to one skilled in the art that the invention is not
limited to the embodiments set forth and that the invention
may be practiced without some of the specific details and
examples discussed.

In some embodiments a NUMA node includes one or
more processing units and local memory associated with
those processing units. Any process on a host machine is
assigned to a particular NUMA node, as is each virtual
machine. The NUMA nodes are allocated dynamically. In
some cases, a process can perform actions that require the
use of non-local memory and/or the use of processors from
multiple NUMA nodes. One type of process that can per-
form actions that use multiple NUMA nodes is the trans-
mission of data between (e.g., to and/or from) a virtual
machine and a physical network interface card (PNIC) on
the host of the virtual machine. When a VM sends data, the
virtual machine uses its assigned NUMA node and the data
is sent through a network queue to the PNIC. When the VM
is transmitting data from a different NUMA node than the
device/network queue, the system gets poorer network per-
formance. The transmission rate is reduced because data has
to be sent to and received from memory that is not local to
the VM. In such a transmission, data is sent from one
NUMA node to another through an interconnect, delaying
the data compared to cases where the data passes only
through one NUMA node.

Some embodiments provide a NUMA assignment process
(e.g., a scheduler) that assigns VMs to use (or operate on)
particular NUMA nodes. The scheduler of some embodi-
ments is biased toward assigning a VM to the same NUMA
node as a network queue to which the VM is assigned. Some
embodiments provide a process (e.g., a load balancer) that
assigns network queues to particular VMs. The load bal-
ancer of some embodiments is biased toward assigning a
VM that uses a particular NUMA node to use a network
queue that uses the particular NUMA node.

The load balancers of some embodiments implement a
queue management system that efficiently and dynamically
manages multiple queues that process traffic to and from
multiple virtual machines (VMs) executing on a host. This
system manages the queues by (1) breaking up the queues
into different priority pools with the higher priority pools
reserved for particular types of traffic or VMs (e.g., traffic for
VMs that need low latency), (2) dynamically adjusting the
number of queues in each pool (i.e., dynamically adjusting
the size of the pools), (3) dynamically reassigning a VM to
a new queue based on one or more optimization criteria
(e.g., criteria relating to the underutilization or overutiliza-
tion of the queue, NUMA node matching, etc.).

In some embodiments, the queue management system
groups the queues into four types of pools. These are:

(1) a default pool that includes in some embodiments one

default queue that is the initial queue for some or all of

40

45

50

4

the VMs upon their initialization (in other embodi-
ments, the default pool includes more than one default
queue);

(2) a free pool that includes all of the unused queues (i.e.,
the queues that are not assigned to traffic to or from any
VM);

(3) hardware-feature pool that includes queues associated
with a particular hardware feature, such as LRO and
RSS;

(4) VM-requirement pools that include queues that serve
VMs with different kinds of requirements, such as low
latency required (LLR) VMs and high latency tolerated
(HLT) VMs.

In some of these embodiments, the queue management
system initially has all the queues in an unassigned, free
pool, except for one default queue that is in the default pool.
Some embodiments do not allocate the default queue until
the first VM is initialized, while other embodiments specify
the default queue even before the first VM is initialized.

When a VM’s traffic exceeds a pre-set threshold, the
system determines if there is a pool matching the VM’s
traffic requirement (e.g., if there is an LLR pool for an LLR
VM that is exceeding its threshold), and if so, the system
assigns the VM to that pool. If there is no matching pool, the
system creates a new pool and assigns the VM to that pool.
When there are no free queues for creating new pools, the
queue management system preempts (i.e., re-assigns) one or
more assigned queues (i.e., queues assigned to previously
specified pools) and assigns the preempted queue(s) to the
newly created pool. This preemption rebalances queues
amongst existing pools to free up one or more queue(s) for
the new pool. In some embodiments, the rebalancing process
across pools is based on one or more resource allocation
criteria, such as minimum and maximum size of a pool,
relative priorities of the pools, etc.

In addition to balancing queues across pools, the queue
management system of some embodiments rebalances traffic
within a pool. This system uses different criteria in different
embodiments to rebalance traffic within a pool. Examples of
such criteria include CPU load of the associated manage-
ment thread, traffic type, traffic load, other real-time load
metrics of the queues, etc. In some embodiments, the system
uses different rebalancing criteria for different pools. For
instance, the system tries to pack VMs onto fewer queues in
some pools and distribute VMs across more queues in some
other pools. In some embodiments, the queue management
system has a load balancer that performs the rebalancing
process periodically and/or on special events.

When a VM’s traffic falls below a threshold, the queue
management system of some embodiments moves the VM
from a non-default queue back to a default queue. When the
VM is the last VM using a particular non-default queue, the
particular (now unused) queue is moved to the free pool of
unassigned queues so that it can later be reallocated to any
pool. Thus, under this approach, a queue is assigned to one
of the non-default pools as soon as the queue gets assigned
a VM, and it is assigned back to the free pool as soon as its
last VM is reassigned or is shut off.

In addition to or instead of handling the VM data traffic,
the queue management system of some embodiments
dynamically defines pools, uniquely manages each pool,
dynamically modifies the queues within the pools, and
dynamically re-assigns data traffic to and from non-VM
addressable locations (e.g., source end addresses or desti-
nation end addresses) that execute on a host.

US 9,459,904 B2

5

1. Non-Uniform-Memory Access (NUMA) Nodes

Some embodiments of the NUMA matching system are
implemented on host systems for virtual machines (VMs).
Some such host systems include multiple processing units
with access to both local memory of the processors and
non-local memory (e.g., shared memory or memory local to
other processors. The combination of one or more process-
ing units and its local memory is sometimes called a
“NUMA node”. FIG. 2 illustrates multiple NUMA nodes on
a host system. The figure includes a host system 200 with
NUMA nodes 201-203 and PNIC 204. Each NUMA node
201-203 includes memory and multiple processing units
(e.g., central processing units or CPUs). NUMA node 201
includes processing unit 206, bus 211, and memory 216.
NUMA node 202 includes processing unit 207, bus 212, and
memory 217. NUMA node 203 includes processing unit
208, bus 213, and memory 218. The host system also
includes an interconnect 220 that interconnects the different
NUMA nodes 201-203.

Host system 200 is a host system for VMs. NUMA nodes
201-203 include processing units and local memory associ-
ated with those processing units. In some embodiments,
processing units of one NUMA node can quickly access the
local memory of that NUMA node. Generally, processing
units are able to access the local memory of their NUMA
node quickly, while accessing local memory of the other
NUMA nodes would take more time. The processing units
206-208 of some embodiments are implemented as multiple
processing cores of a single chip (e.g., on a multi-core chip).
In other embodiments, the processing units 206-208 are
implemented as separate chips. In some embodiments, the
processing units of multiple NUMA nodes are located on the
same chip.

The buses 211-213 of NUMA nodes 201-203 each allow
the processing units 206-208 of the NUMA nodes to access
local memory 216-218 of the same NUMA node and
(through the interconnect 220) access non-local memory
216-218 of other NUMA nodes. The interconnect 220 allows
processing units on one NUMA node to access memory on
another NUMA node (e.g., processing units of NUMA node
201 are able to access memory 217-218 on NUMA nodes
202 and 203). In context of the processing units and memory
of a NUMA node, “on a NUMA node” means “part of a
NUMA node”. In the context of a process or device (e.g., a
PNIC) “on a NUMA node” means “assigned to use a NUMA
node”.

Each process or processing thread running on the host
machine 200 is implemented by one or more processing
units 206-208. A process runs more quickly if data and
instructions associated with that process is stored on the
memory 216-218 associated with the processing units 206-
208 that the process is running on. In some cases, the local
memory 216-218 of a NUMA node may not be enough to
hold all data and/or instructions for a particular process. In
such a case, the processing units 206-208 on which the
process is running will access additional memory 216-218 of
other nodes.

PNICs can be installed in various slots on a motherboard
of a server. For example PCle PNICs can be assigned to
various PCle slots on the motherboard. In some embodi-
ments, a PNIC’s NUMA node is determined by which slot
(e.g., which PCle slot) the PNIC is installed in on the server
motherboard. Each slot is associated with a particular
NUMA node and can’t be changed to associate with a
different NUMA node. So in some embodiments, a PNIC’s
NUMA node can’t be changed without physically moving
the PNIC to a different slot. Here, PNIC 204 is using a slot

20

25

40

45

50

6

associated with NUMA node 201. In some embodiments, the
PNIC 204 can use resources (e.g., CPUs or memory) asso-
ciated with NUMA nodes 202-203, but any data transfer
between the PNIC 204 and NUMA nodes 202-203 is
through interconnect 220 and is therefore less efficient than
data transfers between PNIC 204 and NUMA node 201.

II. Queue Management System

The queue management system of some embodiments
will now be described by reference to FIG. 3. FIG. 3
describes a system 300 that breaks up the queues into
different priority pools with the higher priority pools
reserved for different types of traffic or VMs (e.g., traffic for
VMs that need low latency). It also dynamically adjusts the
number of queues in each pool (i.e., dynamically adjusts the
size of the pools), and dynamically reassigns a VM to a new
queue in its pool based on one or more optimization criteria
(e.g., criteria relating to the underutilization or overutiliza-
tion of the queue).

FIG. 3 illustrates (1) several VMs 305 that are executing
on a host, (2) the host’s physical NIC (PNIC) 315 that is
shared by the VMs, (3) a network virtualization layer 310
that executes on the host and facilitates traffic to and from
the VMs through the shared PNIC, and (4) a physical
processor scheduler 325 (also called physical CPU or
PCPU) that is a kernel scheduler that directs the processors
as to when and where to run one of the threads (also called
contexts).

The PNIC 315 has several queues 317. These queues
include receive side queues for storing incoming data
received by the host and transmit side queues for storing
outgoing data transmitted from the VMs. In some embodi-
ments, each queue includes a set of buffers for storing
incoming or outgoing data. In some embodiments, the
receive side queues are separate and independent from the
transmit side queues, but the virtualization layer pairs one
receive side queue with one transmit side queue so that the
queue pair can be used as one queue construct for a VM.
Other embodiments, however, do not “pair” the queues. In
other words, these embodiments do not require all the VMs
that use a receive side queue to use the same transmit side
queue; two VM can use the same receive side queue, but
different transmit side queues.

The PNIC also has a receive (RX) side processing engine
311 for receiving incoming packets from a wired or wireless
link. The RX processing engine has a MAC filter 314, which
is configured to associate each VM’s incoming traffic to one
queue pair based on the destination MAC. The virtualization
layer maintains an analogous filter 316 for outgoing packets,
and a queue selector 318 in this layer uses the data in this
filter to configure each VM’s outgoing traffic to use the same
queue pair as the incoming traffic. In some embodiments, the
filter 316 specifies a VM in terms of the VM’s or its VNIC’s
source MAC address, while in other embodiments it speci-
fies a VM in terms of the port ID of a software forwarding
element to which the VM’s VNIC connects. In some
embodiments, the PNIC also includes circuitry for monitor-
ing the queues and generating interrupts.

The VMs executes on top of a hypervisor (not shown),
which, in some embodiments, includes the network virtual-
ization layer 310. FIG. 3 shows each VM to include a virtual
NIC (VNIC) 307. It also shows the network virtualization
layer 310 to include (1) one network stack 350 for each VM,
(2) a software forwarding element 335, (3) a statistics-
gathering engine 340, (4) a statistics storage 345, and (5) a
dynamic load balancer 355. Each network stack includes a
VNIC emulator 327, and an I/O chain 329. Each network
stack is managed by receive/transmit threads 331.

US 9,459,904 B2

7

Each network stack connects to its VM through its VNIC
emulator and connects to the software forwarding element
335, which is shared by all the network stacks of all the
VMs. Each network stack connects to the software forward-
ing element through a port (not shown) of the switch. In
some embodiments, the software forwarding element main-
tains a single port for each VNIC. The software forwarding
element 335 performs packet-processing operations to for-
ward packets that it receives on one of its ports to another
one of its ports, or to one of the ports of another software
forwarding element that executes on another host. For
example, in some embodiments, the software forwarding
element tries to use data in the packet (e.g., data in the packet
header) to match a packet to flow based rules, and upon
finding a match, performs the action specified by the match-
ing rule.

In some embodiments, software forwarding eclements
executing on different host devices (e.g., different comput-
ers) are configured to implement different logical forwarding
elements (LFEs) for different logical networks of different
tenants, users, departments, etc. that use the same shared
compute and networking resources. For instance, two soft-
ware forwarding elements executing on two host devices can
perform L2 switch functionality. Each of these software
switches can in part implement two different logical 1.2
switches, with each logical [.2 switch connecting the VMs of
one entity. In some embodiments, the software forwarding
elements provide L3 routing functionality, and can be con-
figured to implement different logical routers with the soft-
ware L3 routers executing on other hosts.

In the virtualization field, some refer to software switches
as virtual switches as these are software elements. However,
in this document, the software forwarding elements are
referred to as physical forwarding elements (PFEs), in order
to distinguish them from logical forwarding elements, which
are logical constructs that are not tied to the physical world.
In other words, the software forwarding eclements are
referred to as PFEs because they exist and operate in the
physical world, whereas logical forwarding elements are
simply a logical representation of a forwarding element that
is presented to a user. Examples of logical forwarding
elements are logical forwarding elements, such as logical
switches, logical routers, etc. U.S. patent application Ser.
No. 14/070,360 provides additional examples of PFEs and
LFEs, and is incorporated herein by reference.

The software forwarding element 335 connects to the
PNIC 315 to send outgoing packets and to receive incoming
packets. In some embodiments, the software forwarding
element is defined to include a port through which it
connects to the PNIC to send and receive packets. As
mentioned above, the queue selector 318 is interposed
between the software forwarding element 335 and the PNIC
in some embodiments. The queue selector selects the receive
side queues for retrieving incoming packets and transmit
side queues for supplying outgoing packets. As mentioned
above, the queue selector uses the data in the filter 316 to
identify the transmit side queue for supplying a particular
VMs outgoing traffic. The selector does not use the data in
the filter to select a queue and retrieve its packets for a RX
thread of a VM. In some embodiments, the queue selector is
part of the receive/transmit threads 331 of the network
stacks, as further described below. As such, for these
embodiments, the queue selector 318 is a conceptual repre-
sentation of the queue selection operation that the receive/
transmit threads 331 perform in some embodiments.

Each VNIC in the VM is responsible for exchanging
packets between the VM and the network virtualization

10

15

20

25

30

35

40

45

50

55

60

65

8

layer through its associated VNIC emulator 327. Each VNIC
emulator interacts with NIC drivers in the VMs to send and
receive data to and from VMs. In some embodiments, the
VNICs are software abstractions of physical NICs imple-
mented by virtual NIC emulators. For instance, the code for
requesting and obtaining a connection ID reside in compo-
nents of virtual NIC emulators in some embodiments. In
other words, the VNIC state is implemented and maintained
by each VNIC emulator in some embodiments. Virtual
devices such as VNICs are software abstractions that are
convenient to discuss as though part of VMs, but are actually
implemented by virtualization software using emulators.
The state of each VM, however, includes the state of its
virtual devices, which is controlled and maintained by the
underlying virtualization software. Even though FIG. 3
shows one VNIC emulator for each VNIC of each VM, each
VNIC emulator may maintain the state for more than one
VNIC and/or for more than one VM in some embodiments.

The I/O chain in each network stack includes a series of
modules that perform a series of tasks on each packet. As
described in the above-incorporated U.S. patent application
Ser. No. 14/070,360, two examples of I/O chain modules are
an ARP and DHCP proxy modules that resolve ARP and
DHCP broadcast messages without resorting to broadcasting
these messages. Other examples of the processes performed
by the modules in the /O chain include firewall and traffic
tunneling operations. The input/output of the I/O chain goes
to one of the ports of the software forwarding element.

In some embodiments, the receive/transmit threads 331 of
each network stack 350 are kernel-level threads that manage
the modules in the network stack. These threads also manage
the PNIC queue 317 that is associated with the stack’s VM.
Specifically, in some embodiments, the receive side of each
queue has a dedicated RX kernel thread to handle interrupts
and poll packets from the receive side of the queue. Also,
each VM has a dedicated TX kernel thread to handle packets
sent from the VM. In some embodiments, each pair of
receive/transmit threads are executed by one of the cores of
a multi-core processor(s) of the host, as the recommended
number of queues in these embodiments equals the numbers
of the cores of the multi-core processor(s) of the host. Even
through separate receive and transmit threads are used for
separately managing the receive and transmit operations of
the stack and its associated queue in FIG. 3, one of ordinary
skill will realize that in other embodiments one thread is
used to perform both of these tasks. Also, in some embodi-
ments, the RX/TX thread(s) may not be tied or as strictly tied
to the queues, cores and/or VMs.

As mentioned above, the network virtualization layer also
includes the statistics (stat) gathering engine 340, the stat
storage 345 and the dynamic load balancer 355. The stat
gathering engine 340, load balancer 355 and the RX/TX
threads 331 form in part the queue management system of
some embodiments. The statistics that are gathered by the
stat gathering engine 340 provide the load balancer with the
information that it needs to determine when to assign queues
to pools and when to adjust pools.

The stat gathering 340 engine gets statistics from different
sources in different embodiments. For instance, in some
embodiments, this engine pulls stats or receives pushed stats
from either the CPU scheduler 325 (for CPU utilizations)
and the RX/TX threads (for network traffic). For the network
traffic, the network virtualization layer has stats (such as
throughput, packet rate, packet drops, etc.) gathered from a
variety of sources, including each layer of the network
stacks (i.e., each module managed by the RX/TX threads).

US 9,459,904 B2

9

In some embodiments, the stats gathering engine 340
gathers the following network stats for the load balancer:
PNIC packet rate, PNIC throughput, and the CPU utilization
for each of RX/TX threads. In some embodiments, the CPU
scheduler 325 updates the CPU utilization data, while the
RX/TX threads update the PNIC packet rate and throughput,
since they are the threads that actually communicate with the
PNIC and have the exact counts. In some embodiments, a
PNIC driver module 320 is below the queue selector, and
this PNIC driver 320 is the module that communicates with
the PNIC and updates the PNIC load statistics. Also, in some
embodiments, the stats gathering engine not only gathers the
PNIC statistics for the load balancer, but also gathers VNIC
stats collected by the VNIC emulator.

By relying on VNIC stats, the load balancer can decide to
move a latency-sensitive VM to an exclusive queue when its
VNIC packet rate is above some threshold that might start
hurting (e.g., causing excessive delays in traffic speed and/or
reliability) whichever VMs are sharing the same queue with
it. More generally, the load balancer 355 uses the gathered
stats to determine which queues to assign to which VMs,
when to dynamically assign queues to pools and when to
dynamically adjust pools.

In some embodiments, the load balancer periodically
(e.g., every few seconds, few milliseconds, few micro-
seconds, etc.) runs a load balancing process. This process
pulls stats from the “load stats™ data storage 345 that the stat
gathering engine 340 maintains, and based on these stats,
determines whether it needs to allocate pools, to de-allocate
pools, to assign VMs to queues, to resize pools, and/or to
preempt (i.e., re-assign) queues. In some embodiments, the
load balancer assigns VMs to queues by configuring the
filters of the PNIC and the virtualization layer to associate a
particular queue identifier with a particular source MAC
address for outgoing traffic and a particular destination
MAC for incoming traffic. To configure the MAC filters of
the PNIC, the load balancer uses APIs of the PNIC driver
320 to program filters and hardware features for each queue.

As shown in FIG. 3, the load balancer has three modules,
which are the pools 361, the queue balancer 359 and the pool
balancer 357. Pools are a software abstract grouping of
PNIC queues that the load balancer defines. The load
balancer applies different processes to manage queues in
different “pools.” As such, each pool can be viewed as a set
of queues that have the same “feature,” where a feature is
analogous to hardware features (like RSS/LRO). Examples
of such features include VMs requirements (such as low-
latency or low-interrupt-rate).

By applying different processes to manage queues in
different pools, the load balancer can optimize the allocation
of queues and the resizing of the pools differently for
different pools. The pool rebalancer 357 resizes each pool
based on the pool’s resource allocation criteria and preempts
(i.e., re-assigns) queues from other pools when necessary.
Example of such resource allocation criteria include max/
min number of queues of the pool, total CPU utilization of
the pool, network traffic of the pool, quality of service (QoS)
constraints of the pool, etc. The queue rebalancer 359
rebalances (e.g., re-assigns resources as needed to satisfy
particular criteria) the queues in the same pool based on the
pool’s rebalancing criteria. Example of such pool rebalanc-
ing criteria include packing VMs on as few queues as
possible (e.g., for an HLT pool), distributing the VMs across
as many queues as possible (e.g., for an LLR pool), etc. In
some embodiments, different load balancing processes that

15

35

40

45

50

10

manage different pools specify different resource allocation
criteria, different preemption criteria, different rebalancing
criteria, etc.

III. Adjusting VM Allocation and Pools

FIG. 4 conceptually illustrates a process 400 that the load
balancer 355 performs in some embodiments for assigning
VMs to queues. The load balancer 355 in some embodi-
ments performs this process periodically (e.g., every few
seconds, few milliseconds, few micro-seconds, etc.) to
assign VMs to queues, to rebalance queues within each pool
and to maintain desired balance across the pools.

As shown in FIG. 4, the process 400 initially invokes (at
410) a queue assignment process (i.e., a process for assign-
ing VMs to queues) that examines the VMs in the default
pool to identify any VM that it has to move to a non-default
pool, and moves any identified VM to the appropriate
non-default queue in the non-default pool. In some embodi-
ments, the queue assignment process moves (at 410) a VM
to a non-default queue when the VM’s use of a default queue
exceeds a threshold level for the default queue or for the
VM’s use of the default queue. At 410, the process also
identifies any VM in a non-default queue that has to move
back to the default pool, and moves back to the default pool
any identified VM. In some embodiments, the queue assign-
ment process moves (at 410) a VM back to the default pool
when the VM’s use of its non-default queue is below a
threshold level for the non-default queue or the VM’s use of
the non-default queue. The queue assignment process of
some embodiments is further described below by reference
to FIG. 9.

After invoking the queue assignment process, the process
400 invokes (at 420) a pool adjustment process to rebalance
queues within each pool. In some embodiments, the pool
adjustment process examines each pool to determine
whether it has to move one or more VMs between queues in
the pool or create a new queue in the pool and assign a VM
to the new pool based on one or more optimization criteria
for the pool. The pool adjustment process of some embodi-
ments uses different optimization criteria for different pools.
For instance, in some embodiments, the optimization criteria
for a pool biases the process to distribute the VMs across the
queues of the pool (e.g., for an LLR pool). In some embodi-
ments, the optimization criteria for a pool biases the process
to aggregate the VMs onto fewer queues in the pool (e.g., for
an HLT pool). Based on these criteria and its determinations
at 420, the process 400 re-assigns (at 420) VMs between
queues in a pool or to a new queue in the pool.

Next, at 430, the process 400 invokes a pool balancing
process that maintains the desired balance across the pools.
In some embodiments, the pool balancing process examines
the utilization of queues across the various pools. Based on
this examination, the balancing process may allocate one or
more queues to one pool. It may also de-allocate one or more
queues from a pool based on this examination. In one
invocation, this process may allocate (i.e., assign) more
queues to more than one pool, or it might de-allocate queues
(i.e., remove a previously assigned queue) in more than one
pool. The process 400 then ends.

One of ordinary skill will realize that the load balancing
process 400 is different for different embodiments. For
instance, in some embodiments, the process 400 does not
have a separate rebalancing operation 430, but rather per-
forms this operation implicitly or explicitly as part of the
operations 410 and 420. Also, while certain sub-operations
are explained above and below as being part of one of the
operations 410, 420, and 430, one of ordinary skill will
realize that these sub-operation can be performed in different

US 9,459,904 B2

11

ones of these operations 410, 420, or 430, or as different
operations on their own or as sub-operations of different
operations.

IV. Matching NUMA Nodes

A. Unmatched NUMA Nodes

In some embodiments, the load balancer initially assigns
VMs to queues without regard for the respective NUMA
nodes used by the queues and the VMs. Although the
following figures illustrate systems with two NUMA nodes,
one of ordinary skill in the art will realize that some
embodiments assign more than two NUMA nodes to various
tasks and that the assignment system of some embodiments
is applied to systems with any number of NUMA nodes.
Furthermore, while the following figures illustrate at most
two network queues per NUMA node, in some embodiments
any number of network queues can be assigned to a par-
ticular NUMA node.

FIG. 5 conceptually illustrates a set of VMs assigned to
multiple queues without regard to NUMA nodes. The figure
includes NUMA node groups 501 and 502, NUMA nodes
511 and 512, VMs 521-526, queues 531 and 532, hardware
540, and PNIC 550.

NUMA node groups 501 and 502 conceptually illustrate
processes and VMs assigned to use a particular NUMA
node. NUMA node group 501 identifies the queue 531 and
VMs 521-523 as being assigned to use NUMA node 511.
NUMA node group 501 also identified the PNIC 550 as
being assigned to NUMA node 511. NUMA nodes 511 and
512 each represent a processor and its local memory used to
implement processes and virtual machines on a host
machine.

Queues 531 and 532 manage traffic between the VMs
521-526 and the PNIC 550. The hardware 540 of the host
machine provides the physical connections between the
PNIC 550 and the circuits of the host machine that imple-
ment the queues 531 and 532. PNIC 550 sends traffic to and
receives traffic from a network outside the host machine.

VMs 521-526 are virtual machines implemented on the
host machine. Each virtual machine 521-526 is assigned to
a particular NUMA node of the host machine and to a
particular queue. Virtual machine 521 is assigned to use
NUMA node 511 and queue 531. Virtual machine 522 is
assigned to use NUMA node 511 and queue 532. Virtual
machine 523 is assigned to use NUMA node 511 and queue
532. Virtual machine 524 is assigned to use NUMA node
512 and queue 531. Virtual machine 525 is assigned to use
NUMA node 521 and queue 532. Virtual machine 526 is
assigned to use NUMA node 512 and queue 531. In this
allocation of virtual machines to queues, only VMs 521 and
525 are assigned to the same NUMA nodes as their respec-
tive queues. In contrast VMs 522, 523, 524, and 526 are all
assigned to NUMA nodes that are different from the NUMA
nodes of their assigned queues. As a result of the VMs being
assigned to NUMA nodes different from the NUMA nodes
of their associated queues, the transmission of data between
the VMs and the network experiences delays that do not
occur for VMs on the same NUMA nodes as their associated
queues.

FIG. 6 conceptually illustrates a set of VMs assigned to a
single queue without regard to NUMA nodes. The figure
includes the same elements as FIG. 5, except that the queue
531 is not implemented. Accordingly, all network traffic to
and from the VMs 521-526 passes through the queue 532.
Queue 532 is assigned to NUMA node 512, as are VMs
524-526. As VMs 524-526 are assigned to the same NUMA
node as their associated queue 532, the transmission of data
between those VMs and the PNIC 550 does not experience

10

15

20

25

30

35

40

45

50

55

60

65

12

delays related to using different NUMA nodes. VMs 521-
523 are assigned to NUMA node 511. As VMs 521-523 are
assigned to a different NUMA node from their associated
queue 532, the transmission of data between those VMs and
PNIC 550 does experience delays related to using different
NUMA nodes. Furthermore, PNIC 550 is assigned to a
different NUMA node than the queue 532. Because the
PNIC 550 and the queue 532 are on different NUMA nodes,
transmission of data between the PNIC 550 and queue 532
results in additional delays compared to transmission of data
from queue 531 to PNIC 550 in FIG. 5.

B. Matched NUMA Nodes

Some embodiments match VMs on a particular NUMA
node with queues on the same NUMA node. A host machine
achieves the highest overall efficiency (with respect to
NUMA node assignments) in transmitting data from VMs to
a network when all VMs and queues are on the same NUMA
node as the PNIC. FIG. 7 conceptually illustrates a set of
VMs assigned to a single queue 531 on the same NUMA
node as both the VMs and the PNIC served by the queue
531. The figure includes the same elements as FIG. 5, except
that the queue 532 is not implemented and all VMs 521-526
operate on the same NUMA node 511. Accordingly, all
network traffic to and from the VMs 521-526 passes through
the queue 531. Transmission of data from the VMs to the
queue 531 and from the queue 531 to the PNIC 550 are each
more efficient than transmissions between such elements on
different NUMA nodes.

As described above, a host machine achieves the highest
overall efficiency (with respect to NUMA node assignments)
in transmitting data from VMs to a network when all VMs
and queues are on the same NUMA node as the PNIC.
PNICs can be installed in various slots on a motherboard of
a server. For example PCle PNICs can be assigned to
various PCle slots on the motherboard. In some embodi-
ments, a PNIC’s NUMA node is determined by which slot
(e.g., which PCle slot) the PNIC is installed in on the server
motherboard. Each slot has its NUMA association and can’t
be changed. So in some embodiments, a PNIC’s NUMA
node can’t be changed without physically moving the PNIC
to a different slot. Accordingly, in some embodiments, the
system determines the physically determined NUMA node
of the PNIC (or in some embodiments, another physical
device) and assigns all VMs and network queues to the same
NUMA node as the PNIC (or other physical device) unless
such an assignment is not desirable for some other reason
(e.g., the NUMA node can’t handle all the VMs and all the
network queues).

In addition to using network queues with particular VMs
assigned to them, the system of some embodiments provides
a default queue that handles broadcast and/or multicast
traffic (e.g., data packets addressed to multiple VMs, to all
VMs, etc.). In some such embodiments, the system always
implements the default queue on the NUMA node of the
PNIC and further implements one or more non-default
queues for the VMs to use for traffic addressed to particular
VMs. For example, in some embodiments, both a default
queue and a single non-default queue are implemented and
assigned to the NUMA node of the PNIC.

Memory and processor related delays are lowest when all
virtual machines, their associated queue(s) and the PNIC are
on the same NUMA node. However, this condition is not
always possible to achieve under all circumstances. For
example, there are limits to how many VMs a particular
NUMA node can process at the same time. Accordingly,
some embodiments provide NUMA node assignments that
use multiple NUMA nodes. In some embodiments, when

US 9,459,904 B2

13

metrics of resource use of network queues on a single
NUMA node (e.g., as shown in FIG. 7) or performance
metrics meet some threshold metric, and/or is predicted to
exceed some threshold metric, the VMs are split up between
network queues on multiple NUMA nodes. In some embodi-
ments, a virtual machine is assigned (or re-assigned) to a
different NUMA node than the existing VMs and the system
implements a new network queue assigned to the same
NUMA node as the newly assigned (or re-assigned) VM
when a threshold metric is met.

FIG. 8 conceptually illustrates a set of VMs assigned to
multiple queues on the same NUMA node as both the VM
and the PNIC served by the same queues. The figure
includes the same elements as FIG. 5. However, rather than
each VM 521-526 being randomly assigned to a network
queue, as in FIG. 5, each VM is assigned to a queue on the
same NUMA node as the VM. Accordingly, all network
traffic to and from the VMs 521-523 passes through the
queue 531, all of which are on the NUMA node 511 and all
network traffic to and from the VMs 524-526 passes through
the queue 532, all of which are on NUMA node 512.
Transmissions of data from VMs 521-523 to the network are
the most efficient, as NUMA node 511 is the NUMA node
of all elements in the communications chain (including the
PNIC 550) out of the host system to a network. Transmis-
sions of data from VMs 524-526 to the network are less
efficient than transmissions from VMs 521-523, because the
PNIC 550 uses a different NUMA node 511 than the NUMA
node 512 of the queue 532. However, transmissions of data
from VMs 524-526 to the network are more efficient than
they would be if the VMs 524-526 used a different NUMA
node than the queue to which they were assigned.

C. Overflow Queues

Network queues have finite amounts of various resources
available. In some embodiments, these resources include
one or more of available bandwidth, maximum achievable
packet rate, and available CPU cycles. Similarly, the net-
work queues will not work satisfactorily when certain per-
formance levels are too high or too low. For example, in
some embodiments, latency may be too high for smooth
operation of the network queue or throughput may be too
low. In some embodiments, the metric of the use of one or
more resources and/or the state of one or more performance
metrics of a network queue determine whether the network
queue will be split up (e.g., whether the VMs will be
re-assigned to another network queue and/or whether newly
implemented VMs will be assigned to an existing network
queue or to a new network queue).

In some embodiments, when a network queue is meeting
a threshold metric (e.g., using more than some percentage,
such as 85%, 90%, etc. of the available bandwidth, causing
a higher than threshold latency to be detected, etc.), a queue
assignor (e.g., a load balancer of the host machine) imple-
ments a new network queue for additional VMs. Similarly,
in some embodiments, when more than a threshold amount
of a resource of a network queue is used by multiple VMs
or when another threshold metric is met (e.g., network speed
of'a VM drops below a threshold metric), one or more of the
VMs already assigned to that queue are moved to another
queue (e.g., on the same NUMA node or a different NUMA
node). The queue to which these “overflow” VMs are
assigned are referred to herein as overflow queues.

For some embodiments, FIG. 9 illustrates a system (e.g.,
a host machine or hypervisor) that provides a single over-
flow queue on a single NUMA node for overflow VMs on
multiple NUMA nodes. The figure includes all the elements
of FIG. 5 and an overflow queue 933. In FIG. 9, VMs 521

5

10

20

25

30

35

40

45

50

55

60

65

14

and 522 are using more than a threshold amount of an
available resource of queue 531 (e.g., transmitting and/or
receiving more than a threshold amount of the available
bandwidth of queue 531) or meeting some other metric (e.g.,
latency exceeds a threshold level). Similarly, VMs 524 and
525 are using more than a threshold amount of an available
resource of queue 532 (e.g., transmitting and/or receiving
more than a threshold amount of the available bandwidth of
queue 532) or meeting some other metric (e.g., latency
exceeds a threshold level). Accordingly, the system (e.g., the
load balancer of the host) assigns VMs 523 and 526 to the
overflow queue 933. Assigning all overflow VMs to one
queue has the advantage of not leaving multiple almost
empty queues on multiple NUMA nodes. However, the
transmission speed for data from VM 526 is slower than it
would be if VM 526 were transmitting data through a queue
on the same NUMA node as itself, because the VM 526 is
running on a different NUMA node (512) than the overflow
queue 933 (running on NUMA node 511).

For some embodiments, FIG. 10 illustrates a system (e.g.,
a host machine or hypervisor) that provides a separate
overflow queue on each of multiple NUMA nodes with
overflow VMs. The figure includes all the elements of FIG.
5 and overflow queues 1033 and 1034. In FIG. 10, VMs 521
and 522 are using more than a threshold amount of an
available resource of queue 531 (e.g., transmitting and/or
receiving more than a threshold amount of the available
bandwidth of queue 531) or meeting some other metric (e.g.,
latency exceeds a threshold level). Similarly, VMs 524 and
525 are using more than a threshold amount of an available
resource of queue 532 (e.g., transmitting and/or receiving
more than a threshold amount of the available bandwidth of
queue 532) or meeting some other metric (e.g., latency
exceeds a threshold level). For some of these embodiments,
each NUMA node with an overflow VM is allocated an
overflow queue. Accordingly, the system (e.g., the load
balancer of the host) assigns VM 523 to the overflow queue
1033 and VM 526 to the overflow queue 1034. Assigning all
overflow VMs on a NUMA node to an overflow queue of
that NUMA node has the advantage of providing faster
transmission of data for VMs that would otherwise be using
queues on NUMA nodes other than their own. However, the
overflow queues on one or more NUMA nodes may be used
at well below their maximum available resource usage (or
performance metrics may not meet a threshold metric) in
cases where only a small number of overflow VMs are
assigned to a NUMA node.

V. Processes for Matching NUMA Nodes

A. Processes Performed by a Load Balancer in Some
Embodiments

In some embodiments, one or more processes operate to
assign VMs to network queues. In some embodiments, these
processes are biased towards assigning the VMs to network
queues on the same NUMA nodes as the VMs. In some
embodiments, a load balancer assigns virtual machines to
particular network queues, splits queues that are too full
(e.g., when the traffic of the VMs of a queue is over a
threshold amount), and consolidates queues that are too
empty (e.g., when the combined traffic of two or more
queues is below a threshold level).

FIG. 11 conceptually illustrates a process 1100 of some
embodiments that assigns VMs to network queues on the
same NUMA node. In some embodiments, the process 1100
is performed by a load balancer. The process 1100 receives
(at 1110) a notification that a VM has been implemented on
a particular NUMA node (e.g., a notification from a sched-
uler). In some embodiments, the notification is sent each

US 9,459,904 B2

15

time a particular VM is assigned to a new NUMA node. For
example, when a VM initially on a first NUMA node
demands more processor cycles than are available on that
NUMA node and a scheduler moves the VM to a new
NUMA node, the load balancer receives a notification from
the system that the VM is on the new NUMA node.
Similarly, when a VM is newly implemented, the scheduler
assigns it to a NUMA node. In some embodiments, the
notification is a push notification (e.g., the system alerts the
load balancer automatically). In other embodiments, the
notification is a pull notification (e.g., the load balancer
accesses data identifying the current NUMA nodes of all
VMs on the host.

The process 1100 then determines (at 1120) whether a
network queue is implemented on the NUMA node of the
particular VM. When there is no network queue imple-
mented on the NUMA node of the particular VM, the
process 1100 proceeds to operation 1130, described below.
When there is a network queue already implemented on the
NUMA node of the particular VM, the process determines
(at 1140) whether there is available capacity on any network
queues currently operating on the NUMA node (e.g.,
whether there are sufficient resources for the particular VM
in view of the actual or predicted resource usage of the other
VMs on that NUMA node). When there is no network queue
with available capacity implemented on that NUMA node,
the process 1100 proceeds to operation 1130

As described above, when there is no network queue on
a NUMA node of a VM or there is a NUMA node that is
identified as lacking the capacity to handle another VM, the
process 1100 implements operation 1130. The process 1100
implements (at 1130) a new network queue on the same
NUMA node as the particular VM.

Once the new network queue has been implemented (at
1130) or once an existing network queue with available
capacity has been identified, the process 1100 proceeds to
operation 1150. The process 1100 assigns (at 1150) the
particular VM to use the previously implemented network
queue or the new network queue on that NUMA node.

Process 1100 of FIG. 11 is described in terms of yes/no
decisions and actions taken based on those specific deci-
sions. However, in some embodiments, other considerations
in addition to matching NUMA nodes are used to determine
what VMs should be assigned to each queue. FIG. 12
conceptually illustrates a process 1200 for determining
assignments of VMs to network queues that is biased toward
assigning VMs to the same NUMA nodes as the network
queues to which the VMs are assigned. The process 1200
identifies (at 1210) the NUMA nodes of the VMs on a host
machine. The process 1200 then identifies (at 1220) the
NUMA nodes of the network queues. The process then
generates (at 1230) an assignment matrix for assigning the
VMs to network queues. In some embodiments, the assign-
ment matrix is a set of data correlating each VM with a
particular network queue to which the VM is assigned.

The process of some embodiments uses various factors to
determine which VMs to assign to which network queues
(e.g., required quality of data connection, expected band-
width usage, etc.). One of the factors that the process uses
to determine which VMs to assign to which network queues
is assignment of the respective NUMA nodes to the VMs
and the network queues. The process is biased toward
assigning VMs to network queues on the same NUMA nodes
as the VMs. The process 1200 then assigns (at 1240) the
VMs to the queues according to the generated assignment
matrix.

10

15

20

25

30

35

40

45

50

55

60

65

16

In some embodiments, the network traffic generated by a
particular VM varies over time. Accordingly, in some cases,
a network queue that had been assigned a particular set of
VMs when those VMs were producing little network traffic
can become overloaded when one or more of the VMs
increases its traffic. In some embodiments, when traffic
through a particular network queue increases beyond a
particular threshold level (e.g., 80% of capacity, 90% of
capacity, etc.) the load balancer implements a new network
queue on the same NUMA node as the particular network
queue and re-assigns one or more of the VMs from the
particular network queue to the new network queue. This is
sometimes referred to as “splitting” a network queue.

FIG. 13 conceptually illustrates a process 1300 of some
embodiments for splitting a network queue. In some
embodiments, the process 1300 is performed by a load
balancer. The process 1300 identifies (at 1310) a single
queue on a NUMA node with multiple VMs assigned to the
queue. The process 1300 identifies (at 1320) one or more
metrics which can be compared to threshold metrics, e.g.,
metrics of a total usage of various resources by the queue
(e.g., bandwidth usage to and/or from the VMs assigned to
the queue), a performance metric, etc. The process 1300
determines (at 1330) whether the metrics meet a threshold
metric. If the metrics do not meet the threshold metric, the
process 1300 ends. If the metrics meet the threshold metric,
the process 1300 splits (at 1340) the queue (e.g., implements
a new queue on the same NUMA node as the single queue
and re-assigns some of the VMs from the single queue to the
new queue.

In contrast, in some cases, a set of network queues on a
NUMA node that had been assigned particular sets of VMs
when those VMs were producing a high level of network
traffic can become underutilized when one or more of the
VMs decreases its traffic. In some embodiments, when traffic
through a particular set of network queues decreases below
a particular threshold level for a single network queue (e.g.,
70% of capacity, 80% of capacity, etc.) the load balancer
consolidates the network queues. To consolidate the network
queues, the load balancer re-assigns all the VMs from one or
more of the set of network queues to a single network queue,
and then eliminates the now empty queue(s). FIG. 14
conceptually illustrates a process 1400 of some embodi-
ments for consolidating a set of network queues.

The process 1400 identifies (at 1410) multiple queues on
a NUMA node with multiple VMs assigned to the queues.
The process 1400 identifies (at 1420) a metric related to the
queues of the NUMA node, to and/or from the VMs assigned
to those queues. The process 1400 determines (at 1430)
whether the metric meets a threshold metric for a single
queue. When the metric meets the threshold metric, the
process 1400 ends. When the metric does not meet the
threshold metric, the process 1400 consolidates (at 1440) the
queues.

In the above description of assignments of network
queues to NUMA nodes, each VM is characterized as being
assigned to a single NUMA node. However, in some
embodiments, the scheduler can assign a virtual machine to
use multiple virtual central processing units (VCPUs). In
some such embodiments, two or more different NUMA
nodes of the host machine hosting the VM may implement
the VCPUs assigned to a single VM. In some embodiments,
the load balancer will be biased toward assigning each VM
to use a network queue that uses a NUMA node that is
assigned to at least one of the VCPUs of the VM. In some
embodiments, the load balancer will be biased toward

US 9,459,904 B2

17
assigning each VM to use a network queue that uses a
NUMA node to which a plurality of the VCPUs of the VM
are assigned.

B. Processes Performed by a Scheduler in Some Embodi-
ments

In some embodiments, a scheduler determines the assign-
ment of VMs to NUMA nodes. The scheduler of some
embodiments generates the assignments of VMs with a bias
toward assigning VMs to the NUMA nodes of the network
queues to which the VMs are assigned.

FIG. 15 conceptually illustrates a process 1500 for deter-
mining assignments of VMs to NUMA nodes that is biased
toward matching NUMA nodes of VMs with NUMA nodes
of network queues.

The process 1500 identifies (at 1510) the NUMA node of
a PNIC of a host machine. The process 1500 then identifies
(at 1520) the NUMA nodes of existing network queues. The
process then generates (at 1530) an assignment matrix for
assigning the VMs to NUMA nodes. The process of some
embodiments uses various factors to determine which VMs
to assign to which NUMA nodes (e.g., expected processing
load, expected memory usage, etc.). Some of the factors that
the process uses to determine which VMs to assign to which
NUMA nodes are the respective NUMA nodes of the PNIC
and the existing network queues. The process is biased
toward assigning VMs to the NUMA node of the PNIC and
to the NUMA nodes of existing network queues. The process
1500 then assigns (at 1540) the VMs to NUMA nodes
according to the generated assignment matrix.

In the above description of assignments of VMs to
NUMA nodes, each VM is assigned to a single NUMA node.
However, in some embodiments, the scheduler can assign a
virtual machine to use multiple virtual central processing
units (VCPUs). In some such embodiments, two or more
different NUMA nodes of the host machine hosting the VM
may implement the VCPUs assigned to a single VM. In
some embodiments, the scheduler will be biased toward
assigning at least one of the VCPUs of a VM to the same
NUMA node as the network queue to which the VM is
assigned. In some embodiments, the scheduler will be biased
toward assigning as many VCPUs of a VM as possible to
operate on the same NUMA node as the network queue to
which the VM is assigned.

The above description characterizes two processes, the
load balancer and the scheduler, as implementing separate
functions. The load balancer assigns VMs to queues and
manages the queues. The scheduler assigns the VMs to
NUMA nodes. In some embodiments, the scheduler does not
coordinate its assignments with the load balancer. However,
in some embodiments the scheduler coordinates its assign-
ments of VMs to NUMA nodes with the load balancer’s
assignment of VMs to queues. In still other embodiments,
the functions of the load balancer and scheduler are per-
formed by different processes or performed by a single
process. In some embodiments, both the scheduler and the
load balancer are processes that are part of an infrastructure
application or operating system of a host machine (e.g., a
hypervisor) that manages communications between VMs,
migration of VMs to other host systems, TCP/IP stack
processing, etc.

V1. Electronic System

Many of the above-described features and applications are
implemented as software processes that are specified as a set
of instructions recorded on a computer readable storage
medium (also referred to as computer readable medium).
When these instructions are executed by one or more
processing unit(s) (e.g., one or more processors, cores of

10

20

25

30

35

40

45

60

18

processors, or other processing units), they cause the pro-
cessing unit(s) to perform the actions indicated in the
instructions. Examples of computer readable media include,
but are not limited to, CD-ROMs, flash drives, RAM chips,
hard drives, EPROMs, etc. The computer readable media
does not include carrier waves and electronic signals passing
wirelessly or over wired connections.

In this specification, the term “software” is meant to
include firmware residing in read-only memory or applica-
tions stored in magnetic storage, which can be read into
memory for processing by a processor. Also, in some
embodiments, multiple software inventions can be imple-
mented as sub-parts of a larger program while remaining
distinct software inventions. In some embodiments, multiple
software inventions can also be implemented as separate
programs. Finally, any combination of separate programs
that together implement the processes described herein is
within the scope of the invention. In some embodiments, the
programs, when installed to operate on one or more elec-
tronic systems, define one or more specific machine imple-
mentations that execute and perform the operations of the
software programs.

FIG. 16 conceptually illustrates an electronic system 1600
with which some embodiments of the invention are imple-
mented. The electronic system 1600 can be any of the host
devices described above. This system can be any of the
devices executing any of the processes and/or queue man-
agement systems described above. The electronic system
1600 may be a computer (e.g., a desktop computer, personal
computer, tablet computer, server computer, mainframe, a
blade computer etc.), phone, PDA, or any other sort of
electronic device. Such an electronic system includes vari-
ous types of computer readable media and interfaces for
various other types of computer readable media. Electronic
system 1600 includes a bus 1605, processing unit(s) 1610, a
system memory 1625, a read-only memory 1630, a perma-
nent storage device 1635, input devices 1640, and output
devices 1645.

The bus 1605 collectively represents all system, periph-
eral, and chipset buses that communicatively connect the
numerous internal devices of the electronic system 1600.
For instance, the bus 1605 communicatively connects the
processing unit(s) 1610 with the read-only memory 1630,
the system memory 1625, and the permanent storage device
1635.

From these various memory units, the processing unit(s)
1610 retrieve instructions to execute and data to process in
order to execute the processes of the invention. The pro-
cessing unit(s) may be a single processor or a multi-core
processor in different embodiments.

The read-only-memory (ROM) 1630 stores static data and
instructions that are needed by the processing unit(s) 1610
and other modules of the electronic system. The permanent
storage device 1635, on the other hand, is a read-and-write
memory device. This device is a non-volatile memory unit
that stores instructions and data even when the electronic
system 1600 is off. Some embodiments of the invention use
a mass-storage device (such as a magnetic or optical disk
and its corresponding disk drive) as the permanent storage
device 1635.

Other embodiments use a removable storage device (such
as a floppy disk, flash drive, etc.) as the permanent storage
device. Like the permanent storage device 1635, the system
memory 1625 is a read-and-write memory device. However,
unlike storage device 1635, the system memory is a volatile
read-and-write memory, such a random access memory. The
system memory stores some of the instructions and data that

US 9,459,904 B2

19

the processor needs at runtime. In some embodiments, the
invention’s processes are stored in the system memory 1625,
the permanent storage device 1635, and/or the read-only
memory 1630. From these various memory units, the pro-
cessing unit(s) 1610 retrieve instructions to execute and data
to process in order to execute the processes of some embodi-
ments.

The bus 1605 also connects to the input and output
devices 1640 and 1645. The input devices enable the user to
communicate information and select commands to the elec-
tronic system. The input devices 1640 include alphanumeric
keyboards and pointing devices (also called “cursor control
devices”). The output devices 1645 display images gener-
ated by the electronic system. The output devices include
printers and display devices, such as cathode ray tubes
(CRT) or liquid crystal displays (LCD). Some embodiments
include devices such as a touchscreen that function as both
input and output devices.

Finally, as shown in FIG. 16, bus 1605 also couples
electronic system 1600 to a network 1665 through a network
adapter (not shown). In this manner, the computer can be a
part of a network of computers (such as a local area network
(“LAN”), a wide area network (“WAN”), or an Intranet, or
a network of networks, such as the Internet. Any or all
components of electronic system 1600 may be used in
conjunction with the invention.

Some embodiments include electronic components, such
as microprocessors, storage and memory that store computer
program instructions in a machine-readable or computer-
readable medium (alternatively referred to as computer-
readable storage media, machine-readable media, or
machine-readable storage media). Some examples of such
computer-readable media include RAM, ROM, read-only
compact discs (CD-ROM), recordable compact discs (CD-
R), rewritable compact discs (CD-RW), read-only digital
versatile discs (e.g., DVD-ROM, dual-layer DVD-ROM), a
variety of recordable/rewritable DVDs (e.g., DVD-RAM,
DVD-RW, DVD+RW, etc.), flash memory (e.g., SD cards,
mini-SD cards, micro-SD cards, etc.), magnetic and/or solid
state hard drives, read-only and recordable Blu-Ray® discs,
ultra density optical discs, any other optical or magnetic
media, and floppy disks. The computer-readable media may
store a computer program that is executable by at least one
processing unit and includes sets of instructions for per-
forming various operations. Examples of computer pro-
grams or computer code include machine code, such as is
produced by a compiler, and files including higher-level
code that are executed by a computer, an electronic com-
ponent, or a microprocessor using an interpreter.

While the above discussion primarily refers to micropro-
cessor or multi-core processors that execute software, some
embodiments are performed by one or more integrated
circuits, such as application specific integrated circuits
(ASICs) or field programmable gate arrays (FPGAs). In
some embodiments, such integrated circuits execute instruc-
tions that are stored on the circuit itself

As used in this specification, the terms “computer”,
“server”, “processor”, and “memory” all refer to electronic
or other technological devices. These terms exclude people
or groups of people. For the purposes of the specification,
the terms display or displaying means displaying on an
electronic device. As used in this specification, the terms
“computer readable medium,” “computer readable media,”
and “machine readable medium” are entirely restricted to
tangible, physical objects that store information in a form
that is readable by a computer. These terms exclude any

10

15

20

25

30

35

40

45

50

55

60

65

20

wireless signals, wired download signals, and any other
ephemeral or transitory signals.

While the invention has been described with reference to
numerous specific details, one of ordinary skill in the art will
recognize that the invention can be embodied in other
specific forms without departing from the spirit of the
invention. In addition, a number of the figures (including
FIGS. 4 and 11-15) conceptually illustrate processes. The
specific operations of these processes may not be performed
in the exact order shown and described. The specific opera-
tions may not be performed in one continuous series of
operations, and different specific operations may be per-
formed in different embodiments. Furthermore, the process
could be implemented using several sub-processes, or as
part of a larger macro process.

This specification refers throughout to computational and
network environments that include virtual machines (VMs).
However, virtual machines are merely one example of data
compute nodes (DCNs) or data compute end nodes, also
referred to as addressable nodes. DCNs may include non-
virtualized physical hosts, virtual machines, containers that
run on top of a host operating system without the need for
a hypervisor or separate operating system, and hypervisor
kernel network interface modules.

VMs, in some embodiments, operate with their own guest
operating systems on a host using resources of the host
virtualized by virtualization software (e.g., a hypervisor,
virtual machine monitor, etc.). The tenant (i.e., the owner of
the VM) can choose which applications to operate on top of
the guest operating system. Some containers, on the other
hand, are constructs that run on top of a host operating
system without the need for a hypervisor or separate guest
operating system. In some embodiments, the host operating
system uses name spaces to isolate the containers from each
other and therefore provides operating-system level segre-
gation of the different groups of applications that operate
within different containers. This segregation is akin to the
VM segregation that is offered in hypervisor-virtualized
environments that virtualize system hardware, and thus can
be viewed as a form of virtualization that isolates different
groups of applications that operate in different containers.
Such containers are more lightweight than VMs.

Hypervisor kernel network interface modules, in some
embodiments, is a non-VM DCN that includes a network
stack with a hypervisor kernel network interface and
receive/transmit threads. One example of a hypervisor ker-
nel network interface module is the vmknic module that is
part of the ESXi™ hypervisor of VMware, Inc.

One of ordinary skill in the art will recognize that while
the specification refers to VMs, the examples given could be
any type of DCNs, including physical hosts, VMs, non-VM
containers, and hypervisor kernel network interface mod-
ules. In fact, the example networks could include combina-
tions of different types of DCNs in some embodiments.

We claim:

1. A method of assigning a plurality of virtual machines
(VMs) to a set of network queues operating on a host
machine, the method comprising:

identifying a non-uniform memory access (NUMA) node

associated with a VM of the plurality of VMs;
for the identified NUMA node, identifying, from the set of
network queues, a network queue assigned to the
NUMA node associated with the VM

upon identifying the network queue assigned to the
NUMA node associated with the VM, generating an
assignment for the VM to one of the network queues
from the set of network queues, said generating is

US 9,459,904 B2

21

biased toward assigning the VM to the network queue
assigned to the NUMA node associated with the VM;
and

using the generated assignment to assign the VM to the

network queue assigned to the NUMA node associated
with the VM, wherein the NUMA node is associated
with the VM when the VM is executed by at least one
processor of the NUMA node and data from the VM is
stored in the memory of the NUMA node.

2. The method of claim 1 further comprising:

determining that the VM has been reassigned from a first

NUMA node to a second NUMA node;
identifying a network queue assigned to the second
NUMA node; and

reassigning the VM to the identified network queue

assigned to the second NUMA node.

3. The method of claim 1, wherein the generating bias
comprises assigning the VM to the network queue of the
NUMA node associated with the VM when a metric of the
network queue of the NUMA node associated with the VM
does not meet a threshold metric and assigning the VM to a
network queue of a different NUMA node when the metric
of the network queue of the NUMA node associated with the
VM does meet the threshold metric.

4. The method of claim 3 further comprising:

after assigning the VM to the network queue of the

different NUMA node, determining that the metric of
the network queue of the NUMA node associated with
the VM has changed from meeting the threshold metric
to not meeting the threshold metric; and

responsive to said determination, reassigning the VM to

the network queue of the NUMA node associated with
the VM.
5. The method of claim 1 further comprising:
identifying a first plurality of network queues on the
NUMA node;

identifying a set of VMs assigned to the first plurality of

network queues;

determining that a metric of the first plurality of network

queues, assigned to the set of VMs does not meet a
threshold metric; and

generating a set of network queue assignments for the set

of VMs that assigns every VM in the set of VMs with
a second plurality of network queues, wherein the
second plurality of network queues comprises fewer
network queues than the first plurality of network
queues.

6. The method of claim 1 further comprising:

identifying, a set of VMs associated with a particular

network queue on the NUMA node;

determining that a metric of the set of VMs associated

with the particular network queue meets a threshold
metric; and

generating a set of network queue assignments for the set

of VMs that assigns the set of VMs with at least two
network queues.

7. The method of claim 6, wherein the at least two
network queues comprise an unassigned network queue, the
NUMA node is a first NUMA node and the set of VMs
comprises at least one VM on a second NUMA node, the
method further comprising assigning the unassigned net-
work queue to the second NUMA node.

8. The method of claim 1 further comprising:

identifying a set of VMs assigned to a particular network

queue on the NUMA node;

identifying an additional VM, wherein the additional VM

is not assigned to the NUMA node;

5

10

15

20

30

35

40

45

50

55

60

22

determining that a metric of the particular network queue
would meet a threshold metric resulting from effects of
the set of VMs on the metric if the set of VMs were to
be assigned to the particular network queue and esti-
mated effects on the metric by the additional VM being
assigned to the particular network queue; and

based on the determining, generating a set of network

queue assignments for the set of VMs and the addi-
tional VM that assigns the set of VMs and the addi-
tional VM with at least two network queues, one the of
at least two network queues being the particular net-
work queue.

9. The method of claim 1, wherein the VM comprises a
plurality of virtual central processing units (VCPUs), at least
a first VCPU of the VM is assigned to a different NUMA
node than at least a second VCPU of the VM, and wherein
assigning the VM to one of the network queues comprises
assigning the VM to a network queue assigned to a same
NUMA node as at least one of the VCPUs of the VM.

10. A non-transitory machine readable medium storing a
program for assigning a plurality of virtual machines (VMs)
to a set of network queues operating on a host machine, the
program comprising sets of instructions for:

identifying a non-uniform memory access (NUMA) node

associated with a VM of the plurality of VMs;
for the identified NUMA node, identifying, from the set of
network queues, a network queue assigned to the
NUMA node;

upon identifying the network queue assigned to the
NUMA node associated with the VM, generating an
assignment for the VM to one of the network queues
from the set of network queues, said generating is
biased toward assigning the VM to a network queue
assigned to the NUMA node associated with the VM
and

using the generated assignment to assign the VM to the

network queue assigned to the NUMA node associated
with the VM, wherein the NUMA node is associated
with the VM when the VM is executed by at least one
processor of the NUMA node and data from the VM is
stored in the memory of the NUMA node.

11. The non-transitory machine readable medium of claim
10, wherein the program further comprises sets of instruc-
tions for:

determining that the VM has been reassigned from a first

NUMA node to a second NUMA node;
identifying a network queue assigned to the second
NUMA node; and

reassigning the VM to the identified network queue

assigned to the second NUMA node.

12. The non-transitory machine readable medium of claim
10, wherein the generating, bias comprises assigning the
VM to the network queue of the NUMA node associated
with the VM when a metric of the network queue of the
NUMA node associated with the VM does not meet a
threshold metric and assigning the VM to a network queue
of a different NUMA node when the metric of the network
queue of the NUMA node associated with the VM does meet
the threshold metric.

13. The machine readable medium of claim 12, wherein
the program further comprises sets of instructions for:

after assigning the VM to the network queue of the

different NUMA node, determining that the metric of
the network queue of the NUMA node associated with
the VM has changed from meeting the threshold metric
to not meeting the threshold metric; and

US 9,459,904 B2

23

responsive to said determination, reassigning the VM to
the network queue of the NUMA node associated with
the VM.

14. The non-transitory machine readable medium of claim
10, wherein the program further comprises sets of instruc-
tions for:

identifying a first plurality of network queues on the

NUMA node;

identifying a set of VMs assigned to the first plurality of

network queues;

determining that a metric of the first plurality of network

queues, assigned to the set of VMs does not meet a
threshold metric; and

generating a set of network queue assignments for the set

of VMs that assigns every VM in the set of VMs with
a second plurality of network queues, wherein the
second plurality of network queues comprises fewer
network queues than the first plurality of network
queues.

15. The non-transitory machine readable medium of claim
10, wherein the program further comprises sets of instruc-
tions for:

identifying a set of VMs associated with a particular

network queue on the NUMA node;

determining that a metric of the set of VMs associated

with the particular network queue meets a threshold
metric; and

generating a set of network queue assignments for the set

of VMs that assigns the set of VMs with at least two
network queues.

16. The non-transitory machine readable of claim 10,
wherein the VM comprises a plurality of virtual central
processing units (VCPUs) and at least a first VCPU of the
VM is associated with a different NUMA node than at least
a second VCPU of the VM, the program further comprises
a set of instructions for identifying a plurality of NUMA
nodes associated with the VCPUs of the VM, wherein said
bias toward assigning the VM to the network queue assigned
to the same NUMA nodes as the VM comprises a bias
toward assigning the VM to a network queue assigned to the
same NUMA node as at least one VCPU of the VM.

17. A device comprising:

a plurality of non-uniform memory access (NUMA)

nodes;

a physical network interface card (PNIC) installed on one

of the NUMA nodes; and

a machine readable medium storing a program for assign-

ing a plurality of virtual machines (VMs) to a set of

network queues operating on the device, the program

comprising sets of instructions for:

identifying the NUMA node with the installed PNIC;

for the identified NUMA node, identifying, from the set
of network queues, a network queue assigned to the
NUMA node with the installed PNIC;

10

15

20

25

30

35

40

45

50

24

upon identifying the network queue assigned to the
NUMA node with the installed PNIC, generating an
assignment for a VM of the plurality of VMs to one
of the network queues from the set of network
queues, said generating is biased toward assigning
the VM to the network queue assigned to the NUMA
node with the installed PNIC; and

using the generated assignment to assign the VM to the
network queue assigned to the NUMA node with the
installed PNIC.

18. The device of claim 17, wherein the NUMA node is
a first NUMA node and the program further comprises sets
of instructions for:

determining that the VM has been reassigned from a first

NUMA node to a second NUMA node;
identifying a network queue assigned to the second
NUMA node; and

reassigning the VM to the identified network queue

assigned to the second NUMA node.

19. The device of claim 17, wherein the generating bias
comprises assigning the VM to the network queue assigned
to the NUMA node with the installed PNIC when a metric
of the network queue assigned to the NUMA node with the
installed PNIC does not meet a threshold metric and assign-
ing the VM to a network queue of a different NUMA node
when the metric of the network queue assigned to the
NUMA node with the installed PNIC does meet the thresh-
old metric.

20. The device of claim 17, wherein the program further
comprises sets of instructions for:

identifying a first plurality of network queues on the

NUMA node;

identifying a set of VMs assigned to the first plurality of

network queues;

determining that a metric of the first plurality of network

queues, assigned to the set of VMs does not meet a
threshold metric; and

generating, a set of network queue assignments for the set

of VM that assigns every VM in the set of VMs with
a second plurality of network queues, wherein the
second plurality of network queues comprises fewer
network queues than the first plurality of network
queues.

21. The device of claim 17, wherein the program further
comprises sets of instructions for:

identifying a set of VMs associated with a particular

network queue on the NUMA node;

determining that a metric of the set of VMs associated

with the particular network queue meets a threshold
metric; and

generating a set of network queue assignments for the set

of VMs that assigns the set of VMs with at least two
network queues.

#* #* #* #* #*

